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Thin liquid films flowing over external aerodynamic surfaces

A.P. ROTHMAYER1, B.D. MATHEIS1 and S.N. TIMOSHIN2

1Department of Aerospace Engineering and Engineering Mechanics, 1200 Howe Hall, Iowa State University.
Ames, Iowa 50011, U.S.A.; 2Department of Mathematics, University College London, Gower Street, London,
WCIE 6BT, U.K.

Received 24 October 2001; accepted in revised form 30 January 2002

Abstract. Boundary-layer theories are constructed to describe the evolution of interfacial waves on thin liquid
films which are driven by an air boundary layer. The theories are focused on cases which are most relevant to
aircraft icing. It is found that condensed-layer solutions with film inertia adequately describe the linear evolution
of interfacial waves for thinner films, whereas a triple-deck pressure displacement interaction is required for thicker
films. In all cases it is found that inertia must be retained within the film, even when the film is much more viscous
than the air.
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1. Introduction

The goal of this study is to identify boundary-layer structures that can be used to model effi-
ciently surface-water processes for aircraft icing. Aircraft icing occurs when an aerodynamic
surface such as a wing or tail-plane passes through a cloud of supercooled water droplets.
Supercooled droplets are small water droplets suspended in the atmosphere whose temperature
is below the freezing temperature of water. This is an unstable equilibrium state in a larger
mass of water. When these droplets strike the aircraft surface they tend to freeze rapidly and
form complex ice structures that can significantly impact the aerodynamics and performance
of the aircraft (see Figure 1 and Gent et al. [1]). The droplet clouds are characterized by the
mean size of the droplets called the Mean Volume Diameter or MVD and the Liquid Water
Content or LWC. The dimensional LWC∗ is simply the total mass of water per unit volume
contained in the droplet cloud. MVD’s are typically small, on the order of 10–50 microns,
with the largest individual droplet diameters ranging up to a few hundred microns. LWC∗’s are
also typically small, about 0·5 g/m3 and rarely exceeding 1–3 g/m3. When the droplets strike
an aerodynamic surface at low temperature they can immediately freeze on impact producing
a milky white ice called rime ice. If temperatures are closer to freezing, and airspeeds and
LWC∗’s are higher, then not all of the water freezes on impact and residual water can be left
on the surface. It is generally believed that this residual water can act to redistribute water
mass along the surface (see Messinger [2] and Myers [3]). The form of the residual water can
vary depending on local conditions and it is generally expected that films, beads, rivulets, and
patches of water can all be present on the airfoil surface at one time or another. There is clear
experimental evidence that water films do exist in icing conditions sufficiently close to the
stagnation point (Olsen and Walker [4]).

In this study we will examine one of these cases, namely thin water films that are generated
by low LWC∗ droplet impacts on an external aerodynamic surface. The films created on the
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Figure 1. Geometry of the airfoil, accreted ice and water film.

surface are driven info motion by the air Prandtl boundary layer and the nature of the flow
within the film is dependent upon the details of the interaction between the film and the air
boundary layer. The primary goal of this study is to determine scaling laws for these films
and to assess when simple lubrication models can be used within the film. In addition, we
seek to identify limits on the validity of the scaling laws when changing parameters such as
film thickness and the surface tension of the film. Of particular concern is the identification of
scaling laws which are applicable to aircraft icing. This requirement places restrictions on the
types of films that should be considered, and, in particular, limits our discussion to situations
where the liquid film density and viscosity are much larger than those of air.

In the aerodynamic application considered here, the typical Reynolds number in the flow is
large and the use of a high-Reynolds-number asymptotic theory seems appropriate. The flow
in a boundary layer on a film-coated wall was considered by Timoshin [5] for the regime of
complete viscous-inviscid interaction between near-wall viscous layers and the flow outside
the boundary layer. All of the boundary-layer structures considered in this study may be
viewed as a subset of this general problem. In that study, the film flow was assumed to be
confined to the viscous sublayer of the triple-deck, and was found to provide the setting for
a simultaneous description of both linear Tollmien-Schlichting and interfacial instabilities
as well as nonlinear wave evolution and flow separation. A related triple-deck study was
conducted by Tsao et al. [6] using a strong lubrication approximation within the film, to be
discussed later, with application to airfoil leading edges.
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Figure 2. Condensed-layer scales.

In certain ranges of the relative densities and viscosities of the two fluids, the multiple
instability modes contained within the triple-deck interact in a complicated fashion (with both
direct mode crossing and resonant interactions possible under the right conditions, see Bowles
et al. [7] and Timoshin and Hooper [8]). It should be noted, however, that the spectrum of
Tollmien-Schlichting/interfacial-wave interactions proves to be more limited for the central
problem considered in this paper, namely that of air-driven liquid films applicable to aircraft
icing, and one of our aims here is to verify this conclusion in computations which extend the
results of earlier studies. We find, in particular, that for all realistic choices of the scaled film
thickness and surface tension, the Tollmien-Schlichting modes remain essentially unaffected
by the film evolution in the linear approximation, mainly because of the large density differ-
ence between water and air. This property was noted earlier in Pelekasis and Tsamopoulos [9]
who also found that the interfacial instability alone may lead to absolute instability in the flow
(see also Rothmayer and Tsao [10]).

It should be noted that it is not always obvious to what extent the conclusions drawn from a
high-Reynolds-number theory can be translated to flow properties at large but finite Reynolds
number. For example, it appears that the triple-deck structure discussed below does not re-
produce a mode intersection described in Ozgen et al. [11] for a particular finite Reynolds
number. A more systematic study of both asymptotic and finite Reynolds flows should help
fill the existing gaps in our understanding of two-fluid boundary layers and related flows. In
this paper, the focus will remain on the asymptotic analysis and its implications for external
aerodynamics.

2. Short-scaled nonlinear interactions – The condensed layer

The generation of air-driven surface waves on a film requires a feedback mechanism between
the air and water. It turns out that such a mechanism is present on short scales for near-wall
viscous layers for which the displacement of the viscous sublayer is zero, and these are called
condensed layers (see Bogolepov and Neiland [12, 13], Smith et al. [14], and Rothmayer and
Smith [15]). It is known that the airflow within such layers responds to wall distortions (film
waves in our case) of length � and height Re−1/2�1/3 and produces a pressure reaction of or-
der �2/3 (see Rothmayer and Smith [15]). The dominant surface film waves are found to occur
when the destabilizing effect of this air forcing (either pressure or shear) is counterbalanced
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Figure 3. Surface tension and film-thickness parameter space, showing the various structures considered in this
study. N.S. = Navier-Stokes region; C.L. = condensed layer; T.D. = triple-deck; KS = regions known to be
controlled by modified Kuramoto-Sivashinsky equations (see Rothmayer and Tsao [10])

by the stabilizing effect of surface tension. For example, a pressure response to the interfacial
wave distortion is balanced by surface tension when:

pwater − pair ∼ Re−1σ
∂2fwater

∂x2
, (1)

where p is pressure, x is streamwise distance along the airfoil/ice and f is the air-water
interface height (see Figure 1). The non-dimensional parameters used in the condensed layer
are the Reynolds number Re = ρ∞V∞L/µ∞ � 1, the non-dimensional surface tension
σ = σ ∗/(V∞µ∞) (which is related to Weber number by We = Reσ−1), the water-to-air
viscosity ratio M = µ∗

water/µ∞ � 1 and the air-to-water density ratio Daw = ρ∞/ρ∗
water �

1. The variables here have their usual meanings, ( )∗ denotes a dimensional value and ∞
denotes freestream conditions. We also assume in this study that the air is evaluated at constant
temperature and low Mach number and is effectively incompressible. More general cases are
considered in Rothmayer and Tsao [10].

Substituting the condensed-layer estimates for the various terms in (1) and solving for the
streamwise length-scale we have

�2/3 ∼ Re−1σ
Re−1/2�1/3

�2
⇒ � ∼ Re−9/14σ 3/7. (2)

The film thickness is on the order of the air viscous-sublayer thickness and is (see Figures 2
and 3)

hfilm ∼ Re−1/2�1/3 ∼ Re−5/7σ 1/7. (3)

Formally, we assume that the air-water interface is located at f ∼ Re−5/7σ 1/7F and the
undisturbed film thickness is F = h. This structure will be termed a condensed layer and its
location in a surface-tension and film-thickness parameter space is shown in Figure 3. The
streamwise length scale of condensed-layer interfacial waves, as given by (2), is close to the
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boundary-layer thickness in length, due to the fact that σ is only a modestly large number.
In addition, the air sublayer thickness for the condensed layers, and hence the film thickness,
is a small fraction of the air boundary-layer thickness. Formally, Rothmayer and Tsao [10]
assume the following expansions in the condensed layer:

(x, y, z) = (Re−9/14σ 3/7X,Re−5/7σ 1/7Y,Re−9/14σ 3/7Z).

The time scale is chosen to be the slowest one in the problem, which comes from the water-
interface motion, and is

t = Re−3/7σ 2/7D−1/2
aw MT . (4)

In all of the condensed-layer structures to be discussed in this paper we will assume the
following relation between the air/water density ratio and the air/water viscosity ratio:

M = MD−1/2
aw .

In the context of our study, the justification for this equation is simply that this balance holds
for water and air over a wide range of temperatures applicable to aircraft icing problems (with
M typically lying between 2 and 4) and that the condensed-layer equations critically depend
upon whether or not this particular balance is true. It may be shown that the time scale of (4)
is faster than the time scale of the larger-scale film evolution which is driven by the air Prandtl
boundary layer providing that σ � Re3/2. This condition is found to be true given the bounds
on σ to be discussed in Section 3 (see Figure 3). The dependent variables in the air take on
the standard form for a condensed-air sublayer but with the streamwise scaling of (2) (see
Rothmayer and Smith [15])

(u, v,w) ∼ (Re−3/14σ 1/7u,Re−2/7σ−1/7v,Re−3/14σ 1/7w),

p ∼ PB + Re−3/7σ 2/7p,

where lower-case variables are used for air and upper-case variables for water. The equations
in the air are then

uX + vY + wZ = 0,

uuX + vuY + wuZ = −pX(X,Z, T ) + uYY ,

uwX + vwY + wwZ = −pZ(X,Z, T ) + wYY .

The boundary conditions are given by

u → λ(Y − h) as Y → ∞
u(X,F,Z) = v(X,F,Z) = w(X,F,Z) = 0,

(5)

where τw = λRe−1/2 is the wall shear stress of the undisturbed air boundary layer. The air
equations are quasi-steady due to the fact that the time scale of the air-water interface is much
slower than the natural air time scale. The water-dependent variables are determined from
a direct pressure and shear-stress match with the air. The shear-stress match requires that
the water velocities within the film be scaled down from the air velocities by a factor of the
viscosity ratio between air and water, i.e. M = MD

−1/2
aw . This result is responsible for the

no-slip air boundary conditions (5) emerging from the more general air-water velocity match
to be discussed in Section 3. Formally, the dependent variables within the water film are:
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(u, v,w) ∼ (Re−3/14σ 1/7D
1/2
aw M−1U,Re−2/7σ−1/7D

1/2
aw M−1V,Re−3/14σ 1/7D

1/2
aw M−1W),

p ∼ PB + Re−3/7σ 2/7P.

The equations within the water film are

UX + VY + WZ = 0,

M−2[UT + UUX + VUY + WUZ] = −PX(X,Z, T ) + UYY ,

M−2[WT + UWX + VWY + WWZ] = −PZ(X,Z, T ) + WYY ,

with the no-slip boundary conditions (5) also holding at the bottom of the film (i.e. Y = 0).
Note that, even though a large-viscosity-ratio approximation is used (i.e. M � 1), the large
water-to-air inertia (Daw � 1) brings the viscous and convective terms into balance within
the film. This balance is controlled by M and only depends on local temperature, i.e. it does
not depend upon changes in Reynolds number or water surface tension. This will be termed a
weak lubrication approximation. The remaining boundary conditions are all evaluated along
the air-water interface at Y = F(X,Z, T ). The stress match on the air-water interface gives

UY(X,F,Z) = uY (X, F,Z), WY (X,F,Z) = wY (X,F,Z)

and

P(X,F,Z) = p(X,F,Z) + K, (6)

where the interface curvature is K = −[FXX +FZZ]. In addition, the kinematic condition for
the interface is given by

V (X,F,Z) = FT + U(X,F,Z)FX + W(X,F,Z)FZ (7)

A simplified form of the above equations can be obtained by assuming that M � 1. This
will be termed a strong lubrication approximation, since in this limit inertia effects are absent
from the film and a true lubrication equation is recovered for the film interface motion. When
M � 1 the equations within the film reduce to a Couette-Poiseuille system. The solution of
these equations with no-slip boundary conditions at the solid surface under the film and the
shear stress matching at the air-water interface gives:

U = ∂P

∂X

Y 2

2
+ Y

[
τWX − ∂P

∂X
F

]
, W = ∂P

∂Z

Y 2

2
+ Y

[
τWX − ∂P

∂Z
F

]
.

Substitution in the mass-conservation equation and integration gives an equation for V, which
we will not write down here since it is fairly lengthy. All three velocities are then substituted
in the kinematic condition (7). After some manipulation the following equation is obtained:

∂F

∂T
+ ∂

∂X

[
τWX

F 2

2
− ∂P

∂X

F 3

3

]
+ ∂

∂Z

[
τWZ

F 2

2
− ∂P

∂Z

F 3

3

]
= 0,

where the water pressure is given by (6) and air shear stresses are τWX = ∂u/∂Y (X,F,Z)

and τWZ = ∂w/∂Y (X,F,Z). We performed a linear stability analysis of the above system
of equations using both the strong and weak lubrication approximations. The transformations
(X, Y ) = (λh3X̂, hŶ ), T = h2M−2T̂ and (U, V, P ) = M2(λhÛ, h−1V̂ , λ2h2P̂ ) are used
to partially remove the parameters appearing in the above equations. The resulting equations
in the water film for the weak lubrication approximation are controlled by the following two
parameters
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$ = 1

λ4h7
, % = M2. (8)

In all of the linear stability analyses presented in this study, it is assumed that the surface
underlying the water is flat and that the linear solution takes the normal mode form

F = h + εf exp(σ T̂ + iαX̂ + iβẐ),

(u, v,w, p) = (λŶ , 0, 0, 0) + ε(u, v,w, p) exp(σ T̂ + iαX̂ + iβẐ),

where h = λ = 1 for the transformed problem and

σ = σR + iσI , σR > 0 ⇒ unstable.

The above equations are substituted in the weak lubrication condensed-layer equations and
the resulting linear system for the transformed problem is

iαu+ vŶ = 0, σu+ Ŷ

%
iαu + 1

%
v = − iαp + uŶ Ŷ ,

with the boundary conditions along the air water interface given by

%
(
uŶ

)
water = (

uŶ
)

air , v =
(
σ + iα

%

)
f .

The air is governed by the steady-state linearized condensed-layer equations and these are
solved in the standard fashion (see Smith [16], for example). The linear problem for the
strong lubrication problem simplifies considerably. Here, the water film reduces to a Couette-
Poiseuille system, which admits a simple solution. In fact, the following exact solution in
un-transformed variables may be found for the growth rate:

h2σR = −
√

3

2

[
λh3 2π

λX

]5/3

Ai′(0) + 3

4
Ai(0)

[
λh3 2π

λX

]4/3

− 16π4h5

3

[
λ−2
X + λ−2

Z

]2
, (9)

where Ai(0) = 0·35502, Ai′(0) = −0·25881, α = 2π/λX and β = 2π/λZ. A typical growth
rate for this instability is shown in Figure 4, both with and without surface tension. Surface
tension acts to stabilize the waves at short wavelength. Note that the maximum growth rate
occurs on these scales and is close to the neutral point. This instability is also found to obey a
‘Squires Theorem’, in the sense that instabilities with the largest growth rates are found to be
the two-dimensional ones, i.e. β = 0 (see Rothmayer and Tsao [10]). A detailed examination
of the eigenrelation (9) for h → 0 and h → ∞ reveals that all of the pressure forcing drops
from the dispersion relation at leading order in the limit of small film thickness. At large
film thickness all of the shear forcing drops from the leading-order dispersion relation (see
Rothmayer and Tsao [10]).

Computations for the weak-lubrication approximation, (see Matheis [17]) shown in Fig-
ure 5 reveal that the role of inertia can be neglected for thin films, i.e. large $ in this figure,
see (8). However, for sufficiently thick films inertia plays a substantial role in determining
the characteristrics of the waves (maximum growth rate in this case). Remembering that
$ ∼ O(h−7), we see that Figure 5 reveals that in all cases the film thickness only needs to be
moderately large in condensed-layer variables in order for inertia to become important, a result
that is consistent with the predictions of Rothmayer and Tsao [10]. The nonlinear interfacial
waves emerging from the condensed-layer problem for the strong lubrication approximation
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Figure 4. Instability growth rate for a typical linearly unstable solution in the condensed layer, with and without
surface tension.

Figure 5. Maximum growth rate for typical condensed-layer interfacial waves using the weak-lubrication
approximation. The ◦’s are the values of maximum growth rate for the strong-lubrication approximation.

are shown in Figure 6 (see Matheis [17]). Here, the linear waves at early time gradually evolve
into regular nonlinear traveling waves at later time. As may be clearly seen from the streamline
pattern in the air above the interfacial wave, the air solution at later time is separated for this
particular case.

To summarize, the importance of the condensed layer is that it is the first film thickness
for which inertia effects become important within the film. It is also the film thickness where
the interfacial waves cross over from being shear-driven to being pressure-driven. From the
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Figure 6. Typical nonlinear condensed-layer solution computed using the strong lubrication approximation, show-
ing the initial low-amplitude wave and the final nonlinear traveling wave with separation in the air flow (the
contours above the interfacial waves are the instantaneous air streamlines). Note that horizontal and vertical lengths
are not plotted on the same scale.

point of view of engineering applications, it must be stressed that a lubrication approximation
can only be used to describe the film motion when the film thickness is much less than the
condensed-layer value of (3).

3. The role of surface tension

The streamwise scale of the condensed layer is controlled by surface tension. For water films,
the non-dimensionalized value of the surface tension, σ , is a modestly large number, typically
in the range of about 40 to 80. Here, we will address the question of how much the surface
tension can change before affecting the condensed-layer structure. In practice this change
is accomplished by natural changes in flow conditions, by deliberately adding surfactants to
the water in controlled experiments or by inadvertently changing surface tension using die
markers, de-icing fluids or other contaminants.
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3.1. LARGE SURFACE TENSION – THE TRIPLE-DECK EMERGING FROM THE CONDENSED

LAYER

As the surface tension of the film increases, the wavelengths of the interfacial waves become
longer (see (2) and Figures 2 and 3). Since the water film reacts only to the air sublayer,
this means that the interfacial waves are insensitive to other secondary structures that occur
in the various condensed layers approaching the triple-deck. Therefore, the condensed-layer
structure fails when the streamwise wavelength increases to the scale of the triple-deck (i.e.
Re−3/8), and this happens when σ ∼ O(Re5/8). Formally, the triple-deck film thickness and
surface tension are given by

σ = Re5/8λ−5/4$, hfilm = Re−5/8λ−3/4h

due to (1) and (10) through (13). Focusing on the two-dimensional problem, in both the air
and water, we observe that the spatial coordinates and time in the triple-deck are

(x, y, t) = (Re−3/8λ−5/4X,Re−5/8λ−3/4Y,Re−1/4λ−3/2D−1/2
aw MT ). (10)

The dependent variables in the air are

(u, v) ∼ (Re−1/8λ1/4u,Re−3/8λ3/4v), p ∼ PB + Re−1/4λ1/2p, (11)

whereas the dependent variables in the water are

(u, v) ∼ (Re−1/8λ1/4D1/2
aw M−1U,Re−3/8λ3/4D1/2

aw M−1V ), (12)

p ∼ PB + Re−1/4λ1/2P. (13)

Notice that the large water-to-air viscosity ratio again produces small velocities within the
water, i.e. in order to preserve the shear-stress match at the air-water interface, the water
velocities are scaled down by a factor of M−1 = D

1/2
aw M−1. The governing equations in the

air then become:

uX + vY = 0,

uuX + vuY = −pX(X, T ) + uYY ,

with the boundary conditions u(X,F, T ) = v(X,F, T ) = 0 and u → Y −h+A as Y → ∞.
The no-slip conditions applied to the air at the air-water interface are again a direct conse-
quence of the slow velocities within the water film. The pressure displacement relation in the
triple-deck is known to be

p(X, T ) = U 2
e

π

∫ ∞

−∞
Aξ dξ

X − ξ
, (14)

where Ue is the inviscid slip velocity at the edge of the main air boundary layer. The governing
equations within the water film are found to be

UX + VY = 0,

M−2(UT + UUX + VUY) = −PX(X, T ) + UYY ,
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3.2. LARGE SURFACE TENSION – THE FULL TRIPLE-DECK FOR FLUID-FLUID

INTERACTIONS

Our aim in this section is to make direct comparisons between the linear stability properties
derived from the full triple-deck problem and those calculated for a two-fluid flow with a
number of the limit regimes discussed earlier in this work and elsewhere. The full triple-
deck assumes that M and Daw are O(1). As a result, the expansions (10) through (13) remain
essentially unchanged and the velocities in the air and water are now of the same order of mag-
nitude i.e. Daw is finite in Equation (12)). The full triple-deck equations are those given above,
but now with full unsteady boundary-layer equations in both the air and water, respectively:

Figure 7. Comparison between full triple-deck solutions (solid line) and solutions obtained using various approx-
imate models, for the growth-rate as a function of the wavenumber. Dashed lines – CTD model; dot-dashes –
TDSL model; crosses – CL model; circles – TDWL model. The water/air density ratio is 1000, the air/water
kinematic viscosity ratio is taken to be 14·9. The values for scaled surface tension and film thickness are indicated
in the figure.

with no-slip boundary conditions applied at the bottom of the film and the following boundary
conditions applied at the air-water interface Y = F(X, T ) : P = p − $FXX,UY = uy and
V = FT + UFX. The above equations are a high-viscosity ratio, low-density ratio limit of
the more general trip-deck problem studied by Timoshin [5], that we will term the triple-
deck with weak lubrication or TDWL. Effectively, the triple-deck problem which limits to the
condensed layer at short wavelengths is the full triple-deck interaction to be discussed next but
with a quasi-steady approximation within the airflow and no-slip boundary conditions applied
to the air at the air-water interface.

uT + uuX + vuY = −pX + uYY ,

UT + UUX + VUY = −DawPX + MDawUYY .

The boundary condition in the farfield of the triple-deck is again u → Y +A− h as Y → ∞.
A no-slip condition for the water flow is assumed at the bottom of the water film, i.e. at Y = 0.



352 A.P. Rothmayer et al.

Figure 8. This shows the effect of decreasing surface tension on interfacial instability in the case of a relatively
small fixed film thickness.

Figure 9. The comparison between full triple-deck and approximate models improves when surface tension
decreases and the wavenumber range of most unstable modes broadens??

In addition, the pressure-displacement relation (14) holds for the air flow above the interface.
The air-water interface conditions are applied at the air-water boundary Y = F(X, T ), where
again f − Re−5/8λ−3/4F , and include a full velocity match (with kinematic condition), a result
which is absent in the models discussed above due to the assumed large velocity difference
between air and water:

u = U, v = V = FT + uFX.
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Figure 10. The trend observed in Figures 8 and 9 continues when the scales surface tension decreases further. No
further qualitative changes in the behaviour of approximations to the triple-deck solutions seem to occur when the
scaled surface tension falls below 0·01–0·001.

The interfacial stress match is essentially the same as that given previously, namely P =
p − $FXX and uY = MUY . Again, σ = Re5/8λ−5/4$ and hfilm = Re−5/8λ−3/4h. It
should be noted that for a typical icing wind-tunnel experiment, the surface tension of wa-
ter is about σ ∗ = 75·6 dynes/cm = 0·0756 kg/s2, the air viscosity at freezing is µ∞ =
1·708 × 10−5 kg/(ms), the air speed is on the order of 100 m/s and, for example, the water
film is generally believed to be about 20 microns thick on the leading edge of a 1 meter chord
airfoil (with a Reynolds number on the order of 106). If we assume a representative value of
the Prandtl-boundary-layer skin friction of λ = 1 (realizing that λ can vary from this value)
then the triple-deck surface tension and film thickness are found to be about $ = 8 × 10−3

and h = 0·1, respectively. It is to be expected that the actual values can routinely vary from
these nominal values by a factor of 2 or 3 and perhaps by as much as a factor of 10.

In the above estimate, increases in velocity will tend to lower σ (in proportion to V −1∞ ) and
increase Re, hence lowering $. Larger values of $ will only occur for very low velocities
and Reynolds numbers, The triple-deck film thickness increases in proportion to the physical
film thickness, so a film of 200 microns would give a triple-deck h = 1·0 if the same flow
conditions are assumed. An increase of Re by a factor of 10 will increase h by a factor of 4·2.
Decreasing wall shear, such as when approaching a stagnation point, will tend to decrease
h for fixed physical film thickness, thereby tending back towards condensed-layer properties
(though one expects a breakdown and an emergence of Navier-Stokes properties sufficiently
close to the stagnation point). The shear may reasonably be expected to increase to maximum
values in the range of 2 or 3, which would increase h by a factor of 1·7–2·3. The most
likely places where the triple-deck will become important is in high-shear regions at high
Reynolds numbers for thicker films. For example, at a physical film thickness of 20 microns a
maximum triple-deck h of 1·0 is to be expected. It is the authors’ opinion that the triple-deck
film thicknesses are realistic and can be encountered in practice, as are film thicknesses for
which the condensed layer is valid. The exact situations for which each model is accurate, or
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Figure 11. The results from C.L. (crosses) and TDWL (circles) models are almost identical. This indicates that
the effects of viscous-inviscid interaction are not important at such large wavenumber scales.

is needed, depends upon the details of the flow solution and that issue is beyond the scope of
the present study.

In the undisturbed state u = Y − h + h/M,U = Y/M and v = V = p = P = A = 0,
so that the flow is uni-directional along the flat interface with F = h. A small disturbance
superimposed on the base flow and taken in the form p = exp(σT + iαX)p and F =
h + exp(σT + iαX)F (and similar for all other functions) leads to the following eigenvalue
problem (see Timoshin [5] for more detail)

[iα(Y − h + h/M) + σ ]u(Y ) + v(Y ) = −iαp + u′′(Y ),

iαu(Y )+ v′(Y ) = 0, Y ≥ h,

[iαY/M + σ ]U(Y ) + V (Y )/M = −iαDawP + MDawU
′′
(Y ),

iαU(Y )+ V
′
(Y ) = 0, 0 ≤ Y ≤ h,

u(∞) = A, p = |α|A, p − P = −$α2F

U(0) = V (0) = 0, u′(h) = MU
′
(h),

u(h) +
(

1 − 1

M

)
F = U(h), v(h) = V (h) = [iαh/M + σ ]F .

In general, the linearized triple-deck formulation admits two classes of growing modes cor-
responding to either Tollmien-Schlichting or interfacial instabilities. In certain ranges of the
viscosity and density ratios (M and Daw) and especially for particular film thicknesses, the
modes can coalesce and form a complex pattern of merged instabilities as shown by Timoshin
[5] and Timoshin and Hooper [8]. However, the additional calculations performed in this study
for the particular density and viscosity parameters corresponding to the air-water system show,
in agreement with conclusions in Pelekasis and Tsamopoulos [9], that with realistic choices
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of the film thickness h and the surface tension coefficient $ the two instabilities are distinct
and, more-over, the Tollmien-Schlichting instability growth rates are practically independent
of the flow in the water film. Linear resonances of the type described in Bowles et al. [7] also
do not appear in the air-water flow. We will focus, therefore, on the interfacial modes whose
behavior proves to be highly sensitive to variations in film thickness and surface tension.

In what follows we will compare the properties of the interfacial triple-deck modes with
the results derived for four limit forms of the high-Reynolds-number flow, all derived using
the assumption of high viscosity of the fluid film. A limit form valid for sufficiently long
waves and governed by a lubrication equation in the film and quasi-steady flow in the air was
derived in Timoshin [5], see Section 5.2 therein, and Tsao et al. [6]. This limit form will be
referred to as the triple-deck with strong lubrication or TDSL model. We will find, however,
that this limit does not correctly describe the behavior of short-wave instabilities for which the
condensed layer, or CL, equations may be more appropriate, and we will verify this assertion
below. Also for the purpose of additional testing of the validity of condensed-layer equations
we will include the results for a short-wave approximation of the triple-deck equation obtained
by replacing the pressure-displacement interaction with the condensed-flow condition, A = 0
all the other equations and boundary conditions remaining the same. This will be termed the
condensed triple-deck or CTD. The model discussed at the start of Section 3 will be termed
the triple-deck with weak lubrication or TDWL.

Solutions are presented for the growth rate σR as a function of the wavenumber, α =
2π/λX, for a number of combinations of the parameters h and $. As shown in Figure 7,
neither of the approximate systems can completely reproduce the full triple-deck growth-rate
distribution in a flow with a sufficiently thick film and high surface tension. The TDSL model
(dot-dashed line) shows reasonable agreement with the triple-deck solution in the long-wave
range but fails at order-one wavenumbers. The condensed triple-deck or CTD (dashes) and
condensed layer or CL (crosses) models reproduce qualitative trends of the triple-deck but
give a considerable over-estimation of the growth rate over the entire wavenumber range.
Clearly, the reason for this is the pressure-displacement interaction omitted in those two mod-
els. Also shown in Figure 7 (circles) is the improvement on the condensed-layer model when
the pressure-displacement law p = |α|A is reintroduced back into the air-flow equations. This
is the triple-deck with weak lubrication, or TDWL, discussed at the beginning of Section 3.
In this figure, the new TDWL model does a pretty good job in reproducing the correct triple-
deck behavior even at the larger film thicknesses, with a maximum error that is under 10%.
It should be noted that the wavelength of maximum growth rate is in much better agreement
between the different models than is the magnitude of the growth rate and the location of the
neutral-stability points.

Waves on thinner films are better described by the approximations to the triple-deck model
as is clear from Figure 8–10, and this is particularly true for the regimes with low surface
tension when the maximum instability is pushed towards shorter wavelengths. The difference
between full triple-deck and the condensed triple-deck or CTD solutions is practically negli-
gible in Figure 10, and there is a favorable agreement between these two and the condensed
layer and triple-deck with strong lubrication models also.

The behavior of the approximations to the full triple-deck models is most dramatic in the
intermediate range of film thickness with small surface tension. Figure 11 shows that the triple-
deck with strong lubrication solution fails completely for about 50 per cent of the unstable
range. However, there is excellent agreement between the full triple-deck and condensed
triple-deck solutions. The condensed-layer model also follows the trends of the full triple-
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deck solution, with a slight overestimation of the maximum growth rate and the position of
the upper branch neutral point.

Overall, our comparisons indicate that condensed-layer approximation can be used for
the interfacial mode calculations with fair degree of confidence, provided that the film thick-
ness remains smaller than the viscous-sublayer thickness for the conventional triple-deck and
provided that the surface tension is sufficiently weak, so that the maximum instability does
occur on wavelengths that are shorter than the triple-deck length scale. A way to extend the
condensed-layer model into ranges of longer waves is to include the pressure-displacement
interaction in the air flow of the condensed layer. The triple-deck with strong lubrication
approximation only holds for thin films and high surface tension, whereas the triple-deck
with weak lubrication model works reasonably well as long as the maximum instability takes
place at the scaled wavenumber values of order 20, irrespective of the film thickness.

4. Conclusions

It is the contention of this study that surface-water films of the type encountered in aircraft
icing applications can adequately be described by a lubrication approximation, until the film
thickness has reached the critical thickness of the condensed layer or triple-deck. When this
critical thickness is encountered, inertia becomes important within the film and interfacial
waves begin to affect mass transport within the film (see Rothmayer and Tsao [10] for a
discussion of this second issue). As the film thickness increases through the critical thick-
ness, the interfacial waves change from being shear-driven to being pressure-driven. Since the
condensed-layer interfacial waves are only affected by the near-wall airflow, the condensed
layer is bounded by the triple-deck at large surface tension and by a near-wall Navier-Stokes
region at small surface tension, i.e. by Re−1/4 � σ � Re5/8 where the left limit is the Navier-
Stokes region and the right limit is the triple-deck (see Figure 1). Realistic condensed layers
are closest to the triple-deck, and an examination of the most general triple-deck solutions
reveals that the interfacial waves may be considered in isolation from Tollmien-Schlichting
instabilities in the air. The condensed layer is found to give accurate solutions providing that
the water film is sufficiently thin on triple-deck scales. In cases where the film approaches
finite thickness on triple-deck scales, it is found that Tollmien-Schlichting instabilities are
still largely unaffected by the water film and that the condensed layer and other approximate
solutions can predict qualitative trends of the interfacial instability, but that the full triple-
deck is needed in order to obtain quantitatively accurate solutions. It should be noted that the
linear-wave structure of the triple-deck is much richer than the condensed layer and admits
a variety of instabilities that are not encountered when using the condensed-layer equations.
In situations that are applicable to aircraft icing, a new simplified form of the triple-deck has
been presented which reflects the large differences in air and water densities and viscosities.
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